Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
PLoS Pathog ; 19(5): e1011372, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141303

RESUMO

Giardia intestinalis is a non-invasive, protozoan parasite infecting the upper small intestine of most mammals. Symptomatic infections cause the diarrhoeal disease giardiasis in humans and animals, but at least half of the infections are asymptomatic. However, the molecular underpinnings of these different outcomes of the infection are still poorly defined. Here, we studied the early transcriptional response to G. intestinalis trophozoites, the disease-causing life-cycle stage, in human enteroid-derived, 2-dimensional intestinal epithelial cell (IEC) monolayers. Trophozoites preconditioned in media that maximise parasite fitness triggered only neglectable inflammatory transcription in the IECs during the first hours of co-incubation. By sharp contrast, "non-fit" or lysed trophozoites induced a vigorous IEC transcriptional response, including high up-regulation of many inflammatory cytokines and chemokines. Furthermore, "fit" trophozoites could even suppress the stimulatory effect of lysed trophozoites in mixed infections, suggesting active G. intestinalis suppression of the IEC response. By dual-species RNA-sequencing, we defined the IEC and G. intestinalis gene expression programs associated with these differential outcomes of the infection. Taken together, our results inform on how G. intestinalis infection can lead to such highly variable effects on the host, and pinpoints trophozoite fitness as a key determinant of the IEC response to this common parasite.


Assuntos
Giardia lamblia , Giardíase , Animais , Humanos , Giardíase/metabolismo , Trofozoítos/metabolismo , Intestinos , Giardia lamblia/metabolismo , Células Epiteliais/metabolismo , Mamíferos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37004489

RESUMO

Benzimidazole-2-carbamates (BZ, e.g., albendazole; ALB), which bind ß-tubulin to disrupt microtubule polymerization, are one of two primary compound classes used to treat giardiasis. In most parasitic nematodes and fungi, BZ-resistance is caused by ß-tubulin mutations and its molecular mode of action (MOA) is well studied. In contrast, in Giardia duodenalis BZ MOA or resistance is less well understood, may involve target-specific and broader impacts including cellular damage and oxidative stress, and its underlying cause is not clearly determined. Previously, we identified acquisition of a single nucleotide polymorphism, E198K, in ß-tubulin in ALB-resistant (ALB-R) G. duodenalis WB-1B relative to ALB-sensitive (ALB-S) parental controls. E198K is linked to BZ-resistance in fungi and its allelic frequency correlated with the magnitude of BZ-resistance in G. duodenalis WB-1B. Here, we undertook detailed transcriptomic comparisons of these ALB-S and ALB-R G. duodenalis WB-1B cultures. The primary transcriptional changes with ALB-R in G. duodenalis WB-1B indicated increased protein degradation and turnover, and up-regulation of tubulin, and related genes, associated with the adhesive disc and basal bodies. These findings are consistent with previous observations noting focused disintegration of the disc and associated structures in Giardia duodenalis upon ALB exposure. We also saw transcriptional changes with ALB-R in G. duodenalis WB-1B consistent with prior observations of a shift from glycolysis to arginine metabolism for ATP production and possible changes to aspects of the vesicular trafficking system that require further investigation. Finally, we saw mixed transcriptional changes associated with DNA repair and oxidative stress responses in the G. duodenalis WB-1B line. These changes may be indicative of a role for H2O2 degradation in ALB-R, as has been observed in other G. duodenalis cell cultures. However, they were below the transcriptional fold-change threshold (log2FC > 1) typically employed in transcriptomic analyses and appear to be contradicted in ALB-R G. duodenalis WB-1B by down-regulation of the NAD scavenging and conversion pathways required to support these stress pathways and up-regulation of many highly oxidation sensitive iron-sulphur (FeS) cluster based metabolic enzymes.


Assuntos
Giardia lamblia , Parasitos , Animais , Humanos , Albendazol/farmacologia , Giardia lamblia/genética , Tubulina (Proteína)/genética , Transcriptoma , Peróxido de Hidrogênio
3.
Nucleic Acids Res ; 51(7): 3436-3451, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912103

RESUMO

Giardia intestinalis is a protozoan parasite that causes diarrhea in humans. Using single-particle cryo-electron microscopy, we have determined high-resolution structures of six naturally populated translocation intermediates, from ribosomes isolated directly from actively growing Giardia cells. The highly compact and uniquely GC-rich Giardia ribosomes possess eukaryotic rRNAs and ribosomal proteins, but retain some bacterial features. The translocation intermediates, with naturally bound tRNAs and eukaryotic elongation factor 2 (eEF2), display characteristic ribosomal intersubunit rotation and small subunit's head swiveling-universal for translocation. In addition, we observe the eukaryote-specific 'subunit rolling' dynamics, albeit with limited features. Finally, the eEF2·GDP state features a uniquely positioned 'leaving phosphate (Pi)' that proposes hitherto unknown molecular events of Pi and eEF2 release from the ribosome at the final stage of translocation. In summary, our study elucidates the mechanism of translocation in the protists and illustrates evolution of the translation machinery from bacteria to eukaryotes from both the structural and mechanistic perspectives.


Assuntos
Giardia lamblia , Humanos , Giardia lamblia/genética , Microscopia Crioeletrônica , Modelos Moleculares , Ribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , RNA de Transferência/metabolismo , Eucariotos/metabolismo , Bactérias/metabolismo , Fator 2 de Elongação de Peptídeos/química , Biossíntese de Proteínas
4.
Sci Data ; 9(1): 585, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153341

RESUMO

Spironucleus salmonicida is a diplomonad causing systemic infection in salmon. The first S. salmonicida genome assembly was published 2014 and has been a valuable reference genome in protist research. However, the genome assembly is fragmented without assignment of the sequences to chromosomes. In our previous Giardia genome study, we have shown how a fragmented genome assembly can be improved with long-read sequencing technology complemented with optical maps. Combining Pacbio long-read sequencing technology and optical maps, we are presenting here this new S. salmonicida genome assembly in nine near-complete chromosomes with only three internal gaps at long repeats. This new genome assembly is not only more complete sequence-wise but also more complete at annotation level, providing more details into gene families, gene organizations and chromosomal structure. This near-complete reference genome will aid comparative genomics at chromosomal level, and serve as a valuable resource for the diplomonad community and protist research.


Assuntos
Diplomonadida , Genoma de Protozoário , Cromossomos/genética , Diplomonadida/genética , Genômica , Anotação de Sequência Molecular , Análise de Sequência de DNA
5.
Genomics ; 114(5): 110462, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35998788

RESUMO

Giardia lamblia encodes several families of cysteine-rich proteins, including the Variant-specific Surface Proteins (VSPs) involved in the process of antigenic variation. Their characteristics, definition and relationships are still controversial. An exhaustive analysis of the Cys-rich families including organization, features, evolution and levels of expression was performed, by combining pattern searches and predictions with massive sequencing techniques. Thus, a new classification for Cys-rich proteins, genes and pseudogenes that better describes their involvement in Giardia's biology is presented. Moreover, three novel characteristics exclusive to the VSP genes, comprising an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation are presented, as well as the finding that High Cysteine Membrane Proteins, upregulated under stress, may protect the parasite during VSP switching. These results allow better interpretation of previous reports providing the basis for further studies of the biology of this early-branching eukaryote.


Assuntos
Giardia lamblia , Variação Antigênica/genética , Antígenos de Protozoários , Antígenos de Superfície/genética , Cisteína/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo , Proteínas de Membrana/genética , Proteínas de Protozoários/genética
6.
J Biol Chem ; 298(6): 102028, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568200

RESUMO

Giardiasis is a diarrheal disease caused by the unicellular parasite Giardia intestinalis, for which metronidazole is the main treatment option. The parasite is dependent on exogenous deoxyribonucleosides for DNA replication and thus is also potentially vulnerable to deoxyribonucleoside analogs. Here, we characterized the G. intestinalis thymidine kinase, a divergent member of the thymidine kinase 1 family that consists of two weakly homologous parts within one polypeptide. We found that the recombinantly expressed enzyme is monomeric, with 100-fold higher catalytic efficiency for thymidine compared to its second-best substrate, deoxyuridine, and is furthermore subject to feedback inhibition by dTTP. This efficient substrate discrimination is in line with the lack of thymidylate synthase and dUTPase in the parasite, which makes deoxy-UMP a dead-end product that is potentially harmful if converted to deoxy-UTP. We also found that the antiretroviral drug azidothymidine (AZT) was an equally good substrate as thymidine and was active against WT as well as metronidazole-resistant G. intestinalis trophozoites. This drug inhibited DNA synthesis in the parasite and efficiently decreased cyst production in vitro, which suggests that it could reduce infectivity. AZT also showed a good effect in G. intestinalis-infected gerbils, reducing both the number of trophozoites in the small intestine and the number of viable cysts in the stool. Taken together, these results suggest that the absolute dependency of the parasite on thymidine kinase for its DNA synthesis can be exploited by AZT, which has promise as a future medication effective against metronidazole-refractory giardiasis.


Assuntos
Replicação do DNA , Giardia lamblia , Proteínas de Protozoários , Timidina Quinase , Zidovudina , Animais , Descoberta de Drogas , Gerbillinae , Giardia lamblia/enzimologia , Giardia lamblia/genética , Giardíase/tratamento farmacológico , Metronidazol/uso terapêutico , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Timidina , Timidina Quinase/antagonistas & inibidores , Timidina Quinase/genética , Zidovudina/farmacologia
7.
Front Cell Infect Microbiol ; 12: 862211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573800

RESUMO

Giardia intestinalis is a protozoan parasite causing diarrheal disease, giardiasis, after extracellular infection of humans and other mammals' intestinal epithelial cells (IECs) of the upper small intestine. The parasite has two main life cycle stages: replicative trophozoites and transmissive cysts. Differentiating parasites (encysting cells) and trophozoites have recently been shown to be present in the same regions of the upper small intestine, whereas most mature cysts are found further down in the intestinal system. To learn more about host-parasite interactions during Giardia infections, we used an in vitro model of the parasite's interaction with host IECs (differentiated Caco-2 cells) and Giardia WB trophozoites, early encysting cells (7 h), and cysts. Dual RNA sequencing (Dual RNAseq) was used to identify differentially expressed genes (DEGs) in both Giardia and the IECs, which might relate to establishing infection and disease induction. In the human cells, the largest gene expression changes were found in immune and MAPK signaling, transcriptional regulation, apoptosis, cholesterol metabolism and oxidative stress. The different life cycle stages of Giardia induced a core of similar DEGs but at different levels and there are many life cycle stage-specific DEGs. The metabolic protein PCK1, the transcription factors HES7, HEY1 and JUN, the peptide hormone CCK and the mucins MUC2 and MUC5A are up-regulated in the IECs by trophozoites but not cysts. Cysts specifically induce the chemokines CCL4L2, CCL5 and CXCL5, the signaling protein TRKA and the anti-bacterial protein WFDC12. The parasite, in turn, up-regulated a large number of hypothetical genes, high cysteine membrane proteins (HCMPs) and oxidative stress response genes. Early encysting cells have unique DEGs compared to trophozoites (e.g. several uniquely up-regulated HCMPs) and interaction of these cells with IECs affected the encystation process. Our data show that different life cycle stages of Giardia induce different gene expression responses in the host cells and that the IECs in turn differentially affect the gene expression in trophozoites and early encysting cells. This life cycle stage-specific host-parasite cross-talk is an important aspect to consider during further studies of Giardia's molecular pathogenesis.


Assuntos
Cistos , Giardíase , Animais , Células CACO-2 , Células Epiteliais/metabolismo , Giardia/genética , Giardíase/parasitologia , Humanos , Estágios do Ciclo de Vida , Mamíferos/genética , Proteínas , Proteínas de Protozoários/genética , Análise de Sequência de RNA , Trofozoítos/metabolismo
8.
Trends Parasitol ; 38(7): 605-606, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35074260
9.
Genes (Basel) ; 12(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946882

RESUMO

Giardia intestinalis is an intestinal protozoan parasite that causes diarrheal infections worldwide. A key process to sustain its chain of transmission is the formation of infectious cysts in the encystation process. We combined deep RNAseq of a broad range of encystation timepoints to produce a high-resolution gene expression map of Giardia encystation. This detailed transcriptomic map of encystation confirmed a gradual change of gene expression along the time course of encystation, showing the most significant gene expression changes during late encystation. Few genes are differentially expressed early in encystation, but the major cyst wall proteins CWP-1 and -2 are highly up-regulated already after 3.5 h encystation. Several transcription factors are sequentially up-regulated throughout the process, but many up-regulated genes at 7, 10, and 14 h post-induction of encystation have binding sites in the upstream regions for the Myb2 transcription factor, suggesting that Myb2 is a master regulator of encystation. We observed major changes in gene expression of several meiotic-related genes from 10.5 h of encystation to the cyst stage, and at 17.5 h encystation, there are changes in many different metabolic pathways and protein synthesis. Late encystation, 21 h to cysts, show extensive gene expression changes, most of all in VSP and HCMP genes, which are involved in antigenic variation, and genes involved in chromatin modifications. This high-resolution gene expression map of Giardia encystation will be an important tool in further studies of this important differentiation process.


Assuntos
Giardia lamblia/genética , Encistamento de Parasitas/genética , Expressão Gênica , Giardia lamblia/fisiologia , RNA-Seq
10.
BMC Genomics ; 22(1): 660, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521339

RESUMO

BACKGROUND: Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS: Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS: The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Galinhas/genética , Coccidiose/genética , Coccidiose/veterinária , Eimeria tenella/genética , Perfilação da Expressão Gênica , Doenças das Aves Domésticas/genética , RNA-Seq
11.
Int J Parasitol ; 51(10): 809-824, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331939

RESUMO

Cyst formation in the parasitic protist Giardia duodenalis is critical to its transmission. Existing proteomic data quantifies only 17% of coding genes transcribed during encystation and does not cover the complete process from trophozoite to mature cyst. Using high-resolution mass spectrometry, we have quantified proteomic changes across encystation and compared this with published transcriptomic data. We reproducibly identified 3863 (64.5% of Giardia proteins) and quantified 3382 proteins (56.5% of Giardia proteins) over standard trophozoite growth (TY), during low-bile encystation priming (LB), 16 h into encystation (EC), and at cyst maturation (C). This work provides the first known expanded observation of encystation at the proteomic level and triples the coverage of previous encystation proteomes. One-third (1169 proteins) of the quantified proteome is differentially expressed in the mature cyst relative to the trophozoite, including proteasomal machinery, metabolic pathways, and secretory proteins. Changes in lipid metabolism indicated a shift in lipid species dependency during encystation. Consistent with this, we identified the first, putative lipid transporters in this species, representing the steroidogenic acute regulatory protein-related lipid transfer (StARkin), oxysterol binding protein related protein (ORP/Osh) and glycosphingolipid transfer protein (GLTP) families, and follow their differential expression over cyst formation. Lastly, we undertook correlation analyses of the transcriptome and proteome of trophozoites and cysts, and found evidence of post-transcriptional regulation of key protein classes (RNA binding proteins) and stage-specific genes (encystation markers) implicating translation-repression in encystation. We provide the most extensive proteomic analysis of encystation in Giardia to date and the first known exploration across its complete duration. This work identifies encystation as highly coordinated, involving major changes in proteostasis, metabolism and membrane dynamics, and indicates a potential role for post-transcriptional regulation, mediated through RNA-binding proteins. Together our work provides a valuable resource for Giardia research and the development of transmission-blocking anti-giardials.


Assuntos
Giardia lamblia , Giardíase , Animais , Giardia lamblia/genética , Humanos , Proteômica , Proteínas de Protozoários/genética , Trofozoítos
12.
Parasitology ; 148(6): 712-725, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33536090

RESUMO

The study aimed to monitor parasite and host gene expression during the early stages of Eimeria tenella infection of chicken cells using dual RNA-Seq analysis. For this, we used chicken macrophage-like cell line HD11 cultures infected in vitro with purified E. tenella sporozoites. Cultures were harvested between 2 and 72 h post-infection and mRNA was extracted and sequenced. Dual RNA-Seq analysis showed clear patterns of altered expression for both parasite and host genes during infection. For example, genes in the chicken immune system showed upregulation early (2­4 h), a strong downregulation of genes across the immune system at 24 h and a repetition of early patterns at 72 h, indicating that invasion by a second generation of parasites was occurring. The observed downregulation may be due to immune self-regulation or to immune evasive mechanisms exerted by E. tenella. Results also suggested pathogen recognition receptors involved in E. tenella innate recognition, MRC2, TLR15 and NLRC5 and showed distinct chemokine and cytokine induction patterns. Moreover, the expression of several functional categories of Eimeria genes, such as rhoptry kinase genes and microneme genes, were also examined, showing distinctive differences which were expressed in sporozoites and merozoites.


Assuntos
Eimeria tenella/fisiologia , Macrófagos/parasitologia , RNA-Seq/métodos , Animais , Linhagem Celular , Galinhas , Eimeria tenella/genética , Eimeria tenella/imunologia , Eimeria tenella/isolamento & purificação , Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/imunologia , RNA de Protozoário/química , RNA de Protozoário/isolamento & purificação , Transcrição Gênica
13.
mBio ; 13(1): e0002222, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35100876

RESUMO

Interactions between individual pathogenic microbes and host tissues involve fast and dynamic processes that ultimately impact the outcome of infection. Using live-cell microscopy, these dynamics can be visualized to study, e.g., microbe motility, binding and invasion of host cells, and intrahost-cell survival. Such methodology typically employs confocal imaging of fluorescent tags in tumor-derived cell line infections on glass. This allows high-definition imaging but poorly reflects the host tissue's physiological architecture and may result in artifacts. We developed a method for live-cell imaging of microbial infection dynamics on human adult stem cell-derived intestinal epithelial cell (IEC) layers. These IEC layers are grown in apical imaging chambers, optimized for physiological cell arrangement and fast, but gentle, differential interference contrast (DIC) imaging. This allows subsecond visualization of both microbial and epithelial surface ultrastructure at high resolution without using fluorescent reporters. We employed this technology to probe the behavior of two model pathogens, Salmonella enterica serovar Typhimurium and Giardia intestinalis, at the intestinal epithelial surface. Our results reveal pathogen-specific swimming patterns on the epithelium and show that Salmonella lingers on the IEC surface for prolonged periods before host cell invasion, while Giardia uses circular swimming with intermittent attachments to scout for stable adhesion sites. The method even permits tracking of individual Giardia flagella, demonstrating that active flagellar beating and attachment to the IEC surface are not mutually exclusive. This work describes a generalizable and relatively inexpensive approach to resolving dynamic pathogen-IEC layer interactions, applicable even to genetically nontractable microorganisms. IMPORTANCE Knowledge of dynamic niche-specific interactions between single microbes and host cells is essential to understand infectious disease progression. However, advances in this field have been hampered by the inherent conflict between the technical requirements for high-resolution live-cell imaging on the one hand and conditions that best mimic physiological infection niche parameters on the other. Toward bridging this divide, we present a methodology for differential interference contrast (DIC) imaging of pathogen interactions at the apical surface of enteroid-derived intestinal epithelia, providing both high spatial and temporal resolution. This alleviates the need for fluorescent reporters in live-cell imaging and provides dynamic information about microbe interactions with a nontransformed, confluent, polarized, and microvilliated human gut epithelium. Using this methodology, we uncover previously unrecognized stages of Salmonella and Giardia infection cycles at the epithelial surface.


Assuntos
Células Epiteliais , Mucosa Intestinal , Humanos , Intestinos , Epitélio , Salmonella typhimurium
14.
Int J Parasitol ; 51(4): 225-239, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275945

RESUMO

Diarrheal disease caused by Giardia duodenalis is highly prevalent, causing over 200 million cases globally each year. The processes that drive parasite virulence, host immune evasion and transmission involve coordinated gene expression and have been linked to epigenetic regulation. Epigenetic regulatory systems are eukaryote-conserved, including in deep branching excavates such as Giardia, with several studies already implicating histone post-translational modifications in regulation of its pathogenesis and life cycle. However, further insights into Giardia chromatin dynamics have been hindered by a lack of site-specific knowledge of histone modifications. Using mass spectrometry, we have provided the first known molecular map of histone methylation, acetylation and phosphorylation modifications in Giardia core histones. We have identified over 50 previously unreported histone modifications including sites with established roles in epigenetic regulation, and co-occurring modifications indicative of post-translational modification crosstalk. These demonstrate conserved histone modifications in Giardia which are equivalent to many other eukaryotes, and suggest that similar epigenetic mechanisms are in place in this parasite. Further, we used sequence, domain and structural homology to annotate putative histone enzyme networks in Giardia, highlighting representative chromatin modifiers which appear sufficient for identified sites, particularly those from H3 and H4 variants. This study is to our knowledge the first and most comprehensive, complete and accurate view of Giardia histone post-translational modifications to date, and a substantial step towards understanding their associations in parasite development and virulence.


Assuntos
Giardia lamblia , Histonas , Epigênese Genética , Eucariotos/metabolismo , Giardia lamblia/genética , Giardia lamblia/metabolismo , Histonas/genética , Histonas/metabolismo , Espectrometria de Massas , Processamento de Proteína Pós-Traducional
15.
Front Genet ; 11: 913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014015

RESUMO

Giardia intestinalis colonizes the upper small intestine of humans and animals, causing the diarrheal disease giardiasis. This unicellular eukaryotic parasite is not invasive but it attaches to the surface of small intestinal epithelial cells (IECs), disrupting the epithelial barrier. Here, we used an in vitro model of the parasite's interaction with host IECs (differentiated Caco-2 cells) and RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) in Giardia, which might relate to the establishment of infection and disease induction. Giardia trophozoites interacted with differentiated Caco-2 cells for 1.5, 3, and 4.5 h and at each time point, 61, 89, and 148 parasite genes were up-regulated more than twofold, whereas 209, 265, and 313 parasite genes were down-regulated more than twofold. The most abundant DEGs encode hypothetical proteins and members of the High Cysteine Membrane Protein (HCMP) family. Among the up-regulated genes we also observed proteins associated with proteolysis, cellular redox balance, as well as lipid and nucleic acid metabolic pathways. In contrast, genes encoding kinases, regulators of the cell cycle and arginine metabolism and cytoskeletal proteins were down-regulated. Immunofluorescence imaging of selected, up-regulated HCMPs, using C-terminal HA-tagging, showed localization to the plasma membrane and peripheral vesicles (PVs). The expression of the HCMPs was affected by histone acetylation and free iron-levels. In fact, the latter was shown to regulate the expression of many putative giardial virulence factors in subsequent RNAseq experiments. We suggest that the plasma membrane localized and differentially expressed HCMPs play important roles during Giardia-host cell interactions.

16.
Mol Biol Evol ; 37(12): 3525-3549, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32702104

RESUMO

Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.


Assuntos
Giardia/enzimologia , Proteínas Metiltransferases/metabolismo , Proteoma , Evolução Biológica , Proteínas do Citoesqueleto/metabolismo , Metilação , Trofozoítos/crescimento & desenvolvimento
17.
Microb Genom ; 6(8)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32618561

RESUMO

Diplomonad parasites of the genus Giardia have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic Giardia species, Giardia intestinalis, has been extensively studied at the genome and gene expression level, but no such information is available for other Giardia species. Comparative data would be particularly valuable for Giardia muris, which colonizes mice and is commonly used as a prototypic in vivo model for investigating host responses to intestinal parasitic infection. Here we report the draft-genome of G. muris. We discovered a highly streamlined genome, amongst the most densely encoded ever described for a nuclear eukaryotic genome. G. muris and G. intestinalis share many known or predicted virulence factors, including cysteine proteases and a large repertoire of cysteine-rich surface proteins involved in antigenic variation. Different to G. intestinalis, G. muris maintains tandem arrays of pseudogenized surface antigens at the telomeres, whereas intact surface antigens are present centrally in the chromosomes. The two classes of surface antigens engage in genetic exchange. Reconstruction of metabolic pathways from the G. muris genome suggest significant metabolic differences to G. intestinalis. Additionally, G. muris encodes proteins that might be used to modulate the prokaryotic microbiota. The responsible genes have been introduced in the Giardia genus via lateral gene transfer from prokaryotic sources. Our findings point to important evolutionary steps in the Giardia genus as it adapted to different hosts and it provides a powerful foundation for mechanistic exploration of host-pathogen interaction in the G. muris-mouse pathosystem.


Assuntos
Antígenos de Protozoários/genética , Evolução Biológica , Giardia , Giardíase/parasitologia , Proteínas de Protozoários , Fatores de Virulência , Animais , Genoma de Protozoário , Giardia/genética , Giardia/imunologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Especificidade da Espécie , Fatores de Virulência/genética , Fatores de Virulência/imunologia
18.
Sci Data ; 7(1): 38, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019935

RESUMO

Giardia intestinalis is a protist causing diarrhea in humans. The first G. intestinalis genome, from the WB isolate, was published more than ten years ago, and has been widely used as the reference genome for Giardia research. However, the genome is fragmented, thus hindering research at the chromosomal level. We re-sequenced the Giardia genome with Pacbio long-read sequencing technology and obtained a new reference genome, which was assembled into near-complete chromosomes with only four internal gaps at long repeats. This new genome is not only more complete but also better annotated at both structural and functional levels, providing more details about gene families, gene organizations and chromosomal structure. This near-complete reference genome will be a valuable resource for the Giardia community and protist research. It also showcases how a fragmented genome can be improved with long-read sequencing technology completed with optical maps.


Assuntos
Genoma de Protozoário , Giardia lamblia/genética , Cromossomos , Análise de Sequência de DNA
19.
FEBS Lett ; 593(12): 1313-1325, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31077354

RESUMO

Cystatins are important regulators of papain-like cysteine proteases. In the protozoan parasite Giardia intestinalis, papain-like cysteine proteases play an essential role in the parasite's biology and pathogenicity. Here, we characterized a cysteine protease inhibitor of G. intestinalis that belongs to type-I-cystatins. The parasite cystatin is shown to be a strong inhibitor of papain (Ki  ≈ 0.3 nm) and three parasite cysteine proteases (CP14019, CP16160 and CP16779, Ki  ≈ 0.9-5.8 nm), but a weaker inhibitor of human cathepsin B (Ki  ≈ 79.9 nm). The protein localizes mainly in the cytoplasm. Together, these data suggest that cystatin of G. intestinalis plays a role in the regulation of cysteine protease activities in the parasite and, possibly, in the interaction with the host.


Assuntos
Catepsina B/antagonistas & inibidores , Cistatinas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Giardia lamblia/metabolismo , Papaína/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Cistatinas/química , Giardia lamblia/enzimologia , Interações Hospedeiro-Parasita , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Homologia de Sequência de Aminoácidos
20.
Infect Immun ; 87(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962402

RESUMO

Giardia lamblia, one of the most common protozoal infections of the human intestine, is an important worldwide cause of diarrheal disease, malabsorption, malnutrition, delayed cognitive development in children, and protracted postinfectious syndromes. Despite its medical importance, no human vaccine is available against giardiasis. A crude veterinary vaccine has been developed, and experimental vaccines based on expression of multiple variant-specific surface proteins have been reported, but poorly defined vaccine components and excessive antigen variability are problematic for pharmaceutical vaccine production. To expand the repertoire of antigen candidates for vaccines, we reasoned that surface proteins may provide an enriched source of such antigens since key host effectors, such as secretory IgA, can directly bind to such antigens in the intestinal lumen and interfere with epithelial attachment. Here, we have applied a proteomics approach to identify 23 novel surface antigens of G. lamblia that show >90% amino acid sequence identity between the two human-pathogenic genetic assemblages (A and B) of the parasite. Surface localization of a representative subset of these proteins was confirmed by immunostaining. Four selected proteins, uridine phosphorylase-like protein-1, protein 21.1 (GL50803_27925), α1-giardin, and α11-giardin, were subsequently produced in recombinant form and shown to be immunogenic in mice and G. lamblia-infected humans and confer protection against G. lamblia infection upon intranasal immunization in rodent models of giardiasis. These results demonstrate that identification of conserved surface antigens provides a powerful approach for overcoming a key rate-limiting step in the design and construction of an effective vaccine against giardiasis.


Assuntos
Antígenos de Protozoários/imunologia , Giardia lamblia/imunologia , Giardíase/parasitologia , Proteoma/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Reações Cruzadas , Feminino , Giardia lamblia/química , Giardia lamblia/genética , Giardíase/imunologia , Giardíase/prevenção & controle , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteoma/química , Proteoma/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Vacinas Protozoárias/química , Vacinas Protozoárias/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...